Human Cerebral Cortex Organization Estimated by **Functional PET-FDG Metabolic Connectivity**

Penghui Du^{1,2}, Sean Coursey^{2,3}, Ting Xu⁴, Hsiao-Ying Wey^{2,5}, Jonathan Polimeni^{2,5,6,} Quanying Liu¹, Jingyuan Chen^{2,5}

¹Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China; ²Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; ³College of Science, Northeastern University, Boston, USA; ⁴Child Mind Institute, New York, USA ⁵Department of Radiology, Harvard Medical School, Boston, USA

⁶Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.

1 – Introduction

Functional connectivity (FC) derived from BOLD-fMRI has provided significant insights into human brain organization^{1,2}. The recent introduction of constant-infusion functional [18F]PET (fPET)-FDG has enabled us to track dynamic changes in glucose metabolism over time^{3,4}, sparking growing interest in 'metabolic connectivity' (MC)^{5,6}—the temporal synchrony of FDG-based metabolic dynamics between distant brain regions. In this study, we employed a connectivity gradient-based analysis scheme on a resting-state simultaneous fPET-fMRI dataset⁷, aiming to characterize the detailed cortical organization of fPET-derived MC and understand its differences from fMRI-derived network structures.

Poster #1496

penghui-du@outlook.com

NCC Lab

мĜн

1811

4 – Cortical Organization Revealed by MC **Complementary to FC and MCov**

2 – Major Findings

- The cortical organization estimated by MC exhibits robust spatial features that deviate from those of FC (*panel 4*)
- Low-frequency components (> 5 mins) dominate MC (*panel 5a*)
- Mechanisms such as imperfect baseline removal or consistent scanning experience across subjects may also result in apparent MC (*panel 5b*)

3 – Methods a. Dataset: Monash rsPET-MR Dataset⁷

26 healthy subjects

95min fPET scan

60min fMRI scan

/ frame

fMRI: 3x3x3 mm³ fPET: nominal 2.09x2.09x2.09 mm³

b. Connectivity and Covariance: MC, FC and MCov

As shown in 3-net parcellation and further validated by principal gradients:

- MC is characterized by a prominent **fronto-parietal** component and an • inferior temporal-occipital component
- Results of MC show moderate similarity with MCov and deviate from **FC**, in line with previous studies^{5,8}.

Owing to the low sensitivity of fPET, the results of MC are **noisier than** those of MCov and FC (smaller connectivity correlation scales, more fragmental 10-net parcellation).

> 5 – Is MC Primarily Driven by Short-Term **Changes in Glucose Uptake?**

a. Low frequency component (>5min) dominates MC

A concise representation of connectivity, able to capture its major spatial patterns.

References and Acknowledgements

[1] Biswal et al., 1995; [2] Yeo et al., 2011; [3] Villien et al., 2014; [4] Hahn et al., 2016; [5] Jamadar et al., 2021; [6] Yakushev et al., 2017; [7] Jamadar et al., 2020; [8] Di et al., 2012; [9] Gordon et al., 2016; [10] Blondel et al., 2008; [11] Margulies et al., 2016; [12] Glasser et al., 2016; [13] Schaefer et al., 2018; [14] Volpi et al., 2023; [15] Coursey et al., 2023.

